UNTERSUCHUNGEN ZUM REAKTIONSVERHALTEN EINES TRIFLUORMETHYLIERTEN FORMAMIDINS

HANSJÜRG GRUTZMACHER, HERBERT W. ROESKY^{*}, MATHIAS NOLTEMEYER, NAYLA KEWELOH und GEORGE M. SHELDRICK

Institut für Anorganische Chemie der Universität Göttingen, Tammannstraße 4 , D-3400 Göttingen (FRG)

SUMMARY

N-[(1-Chloro-2,2,2-trifluoro-1- trifluoromethyl)ethyl]-N',N'-dimethylformamidine 1 dimerises in the presence of NEt₃ as a base to give the 2,3-dihydropyrazine derivative $\underline{6}$. Treatment of 1 with the Lewis acid SbCl₅ causes dimerisation to yield $\underline{5}$. After methanoloysis of 1 compound $\underline{6}$ is isolated. The reaction with (Me₂N)₃P leads to the 2-aza-diene 9. A common feature of all the reactions is the elimination of Cl in the first step. The X-ray crystal structure analyses of 3 and 5 are reported.

ZUSAMMENFASSUNG

N-[(1-Chlor-2,2,2-trifluor-1- trifluormethyl)ethyl]-N',N^Ldimethylformamidin <u>1</u> dimerisiert in Gegenwart von NEt₃ als Base zum 2,3-Dihydropyrazinderivat <u>3</u>. Mit der Lewis-Säure SbCl₅ wird das Imidazolinderivat <u>5</u> als Dimerisierungsprodukt gebildet. Nach Methanolyse von <u>1</u> wird das in der Perhaloalkyl-Gruppe substituierte Produkt <u>6</u> erhalten und die Reaktion von <u>1</u> mit (Me₂N)₃P ergibt ein 2-Aza-dien <u>9</u>. Diese Reaktionen haben die Ablösung von Cl aus <u>1</u> als ersten Reaktionsschritt gemeinsam. Die Einkristall-Röntgenstrukturanalysen von <u>3</u> und <u>5</u> werden mitgeteilt.

0022-1139/88/\$3.50

© Elsevier Sequoia/Printed in The Netherlands

EINLEITUNG

Kürzlich berichteten wir über die Synthese von trifluormethylierten Heterocyclen, die in ausgezeichneten Ausbeuten aus N-{(1-Chlor-2,2,2-trifluor-1- trifluormethyl)ethyl]-N',N'-dialkylformamidinen <u>1</u> zugänglich sind [1]. Dabei stellte sich die Frage, ob in diesen Reaktionen Nitrilylide <u>2</u> als Zwischenprodukte entstehen [2]. Um Einblick in den Reaktionsverlauf zu gewinnen, haben wir die Dimerisierung von <u>1</u> unter Base und Lewis-Säure Einfluß, die Methanolyse von <u>1</u> und das Verhalten gegenüber Tris(dimethylamino)phosphan untersucht.

Reaktionen des N-[(1-Chlor-2,2,2-trifluor-1-trifluormethyl)ethyl]-N',N'-dimethylformamidins

In langsamer Reaktion dimerisiert 1/2 in Acetonitril in Gegenwart von Triethylamin NEt₂ als Base zu dem 2,3-Dihydropyrazinderivat 3/2

Als weiteres Nebenprodukt wird das perfluorisopropyl-substituierte Formamidinderivat <u>4</u> gebildet [3]. Bei der Dimerisierung von trifluormethylierten Nitrilyliden werden von Burger und Hübl E-konfigurierte 3,6-Diazaocten-2,4,6-triene beschrieben [4]. Hier verläuft sie unter C-C-Verknüpfung zweier trifluormethylierter Kohlenstoffatome, einer Reaktion, die nicht häufig beobachtet wird [5].

358

Nach Reaktion von <u>1</u> mit einer starken Lewis-Säure wie Antimonpentachlorid in Acetonitril wird das Imidazolinderivat <u>5</u> isoliert :

 $\frac{5}{2}$ ist vermutlich ein Cycloadditionsprodukt an die C=N-Doppelbindung von $\underline{1}\underline{b}$ und wird in mäßigen Ausbeuten erhalten. Die Methanolyse von $\underline{1}$ in Gegenwart von NEt₃ in Acetonitril führt in exothermer Reaktion quantitativ zu <u>6</u>:

Burger <u>et al</u>. erhalten bei der Alkoholyse von trifluormethylierten Nitrilyliden Carbimidsäureester $H(CF_3)_2C-N=CR^1(OR)$ [2]. Nach Reaktion von <u>1</u> mit deuteriertem Methanol unter gleichen Versuchsbedingungen oder nach 14d Rühren mit NEt₃DCl läßt sich weder NMR-noch massenspektroskopisch ein Einbau von Deuterium nachweisen, wie es ein Nitrilylid als Zwischenprodukt erwarten ließe. Wird die Umsetzung von <u>1</u> mit Methanol in Abwesenheit einer Base durchgeführt, so wird <u>7</u> erhalten. Wir nehmen daher an, daß im ersten Reaktionsschritt Cl⁻ eliminiert wird. Wie die sehr hohe Rotationsbarriere der Dimethylaminogruppe in <u>1</u> (~76kJ/mol) [3] zeigt, besitzt die entsprechende C-N-Bindung erheblichen Doppelbindungscharakter, was zu einer Stabilisierung des Kations führen könnte :

Die Entstehung der Verbindungen 5,6 und 7, sowie die Lösungsmittelabhängigkeit der beschriebenen Reaktionen [1] können zwanglos erklärt werden. Unverständlich bleibt der ausgeprägte Einfluß des Lösungsmittels auf die Regioisomerenverteilung bei der Addition an unsymmetrisch substituierte C-C-Mehrfachbindungen [1]. Ob 3 durch Kopf-Kopf-Dimerisierung von capto-dativ-substituierten Radikalen [6] oder durch eine ungewöhnliche Dimerisierung von Nitrilyliden hervorgegangen ist, bedarf weiterer Untersuchungen. ESR-spektroskopisch ließen sich keine Radikale nachweisen. Schließlich läßt sich aus 1 auch ein Chloronium-Ion mit

Tris(dimethylamino)phosphan ablösen. Über das hinsichtlich Fluorideliminierung [7] instabile <u>8</u> wird quantitativ <u>9</u> erhalten.

360

Die Reaktion läßt sich mit dem System $(Me_2N)_3P/CF_3Br$ von Ruppert <u>et al.</u> [8] und dem System $Ph_3P/(CF_3)_2CCl_2$ von Mack und Hanak vergleichen. In dieser Hinsicht verhält sich <u>1</u> wie ein "normales" Perhaloalkan. Es sei darauf hingewiesen , daß auch hier wegen der Instabilität der Zwischenstufen keine genauen Angaben zum Reaktionsmechanismus gemacht werden können.

KRISTALLSTRUKTUREN

Um den Einfluß der Trifluormethylgruppen auf die Verbindungen $\frac{3}{2}$ und $\frac{5}{2}$ zu untersuchen, wurden Einkristall-Röntgenstrukturanalysen angefertigt. Die Ergebnisse sind in Abb.1 und Abb.2 dargestellt. Kristalle von $\frac{3}{2}$ sind monoklin, Raumgruppe P2₁/c, a=734.1(1), b=1760.1(2), c=1291.6(1) pm, ß=91.59(2)^O, Z=4, D_x=1.753Mg m⁻³, μ (Mo-Ka)=0.19mm⁻¹. Die Struktur wurde mit direkten Methoden gelöst und mit allen nicht-H-Atomen anisotrop und starren Methylgruppen auf R=0.084, R_w=0.069 für 1603 unabhängige Reflexe mit F>3 σ (F) verfeinert. Die Atomparameter sind in Tab.1 zusammengefaßt Bindungslängen und -winkel in Tab.2. $\frac{3}{2}$ liegt in einer Twistform vor, in der der Torsionswinkel der Diazadien-Einheit 32^{O} beträgt. Die C-C-Bindung ist mit 159.7 pm deutlich länger als eine gewöhnliche C-C-Einfachbindung. Im Einklang damit wird das Fragmentsignal für

Abb. 1. Molekülstruktur von 3 im Kristall.

Abb. 2. Molekülstruktur von $\frac{5}{2}$ im Kristall.

Atomkoordinaten (x10°) und äguivalente						
isotrope Thermalparameter (pm ² x10 ⁻¹) für <u>3</u>						
	x	У	Z	ü(eq)		
N(1)	6335(7)	6230(3)	6251(4)	34(2)		
C(2)	6081(8)	6902(3)	6597(5)	35(2)		
N(2)	4856(7)	7378(3)	6098(4)	45(2)		
C(1)	3936(9)	7077(4)	5185(6)	62(3)		
C(1')	3822(10)	7961(3)	6621(6)	64(3)		
C(3)	7095(8)	7173(3)	7554(5)	35(2)		
N(3)	7660(7)	7906(3)	7661(4)	48(2)		
C(4)	8629(11)	8097(4)	8613(6)	77(3)		
C(4')	8032(10)	8399(4)	6774(5)	65(3)		
N(4)	7513(6)	6694(3)	8279(4)	36(2)		
C(5)	7157(8)	5896(3)	8071(4)	34(2)		
C(7)	8513(11)	5501(4)	8847(6)	53(3)		
F(1)	10198(6)	5721(3)	8726(3)	77(2)		

4

$F(5^{+})$	9518(5)	5820(2)	5509(3)	70(2)
ゴ(4') ゴ(5:)	10233(5)	6413(2) 5108(2)	6895(3)	59(2)
C(8')	9414(9)	5782(4)	6530(6)	45(3)
F(6)	7476(6)	4344(2)	6979(3)	78(2)
F(5)	4941(6)	4853(2)	6572(3)	67(2)
F(4)	7036(6)	4833(2)	5487(3)	75(2)
C(8)	6715(11)	4928(4)	6479(6)	51(3)
C(6)	7422(8)	5713(3)	6874(5)	32(2)
F(3')	4902(5)	4988(2)	8589(3)	71(2)
F(2')	3897(5)	5991(2)	7814(3)	63(2)
F(1')	4924(6)	6064(2)	9372(3)	71(2)
C(7')	5182(10)	5134(4)	0449(0)	41(3)

5639(2)

4738(2)

9818(3)

8752(3)

er Spur des orthogonalen U., Tensors

das "halbe" Molekül, das der Masse von 2 entspricht, mit hoher Intensität im Massenspektrum aufgefunden.

Kristalle von 5 sind monoklin, Raumgruppe P2₁/c, a=1388.2(2), $b=1366.8(1), c=1464.6(2) pm, \beta=114.07(2)^{\circ}, Z=4, D_{v}=2.031 Mg m^{-3},$ μ (Mo-Ka)=1.83mm⁻¹. Die Struktur wurde wie <u>3</u> auf R=0.042, R₁=0.046 für 2975 unabhängige absorbtionskorrigierte Reflexe mit F>30(F) verfeinert [10]. Die Atomparameter sind in Tab.3, Bindungslängen und -winkel in Tab.4 aufgelistet. In 5 liegen im Kristall die Dimethylaminogruppe am Ring, das Imidazolgerüst und die Dimethylaminomethenium-Gruppe in einer Ebene.

78(2)

78(2)

364

Tab. 1.

F(2)

F(3)

8119(6)

8506(6)

Die Bindungsabstände der C=N-Bindungen sind nur leicht verkürzt und liegen im Bereich der Werte, die bereits für andere trifluormethylierte Verbindungen bestimmt wurden [11].

Tab. 2.

Bindungsabstände (pm) und -winkel (⁰) für <u>3</u>

$ \begin{array}{llllllllllllllllllllllllllllllllllll$				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N(1) - C(2) $C(2) - N(2)$ $N(2) - C(1)$ $C(3) - N(3)$ $N(3) - C(4)$ $N(4) - C(5)$ $C(5) - C(7')$ $C(7) - F(1)$ $C(7) - F(3)$ $C(7') - F(2')$ $C(6) - C(6)$ $C(8) - F(4)$ $C(8') - F(5')$	128.0 (7) 137.6 (7) 144.4 (8) 136.1 (7) 144.3 (8) 145.3 (7) 156.8 (8) 131.0 (8) 134.9 (7) 131.3 (7) 155.6 (8) 132.1 (8) 132.9 (7) 133.7 (7)	$\begin{array}{c} N(1) - C(6) \\ C(2) - C(3) \\ N(2) - C(1') \\ C(3) - N(4) \\ N(3) - C(4') \\ C(5) - C(7) \\ C(5) - C(7) \\ C(5) - C(6) \\ C(7') - F(2) \\ C(7') - F(1') \\ C(7') - F(3') \\ C(6) - C(8') \\ C(8) - F(5) \\ C(8') - F(4') \\ C(8') - F(6') \end{array}$	144.2 (7) 150.2 (8) 145.3 (7) 129.1 (7) 146.9 (7) 155.8 (9) 159.7 (8) 131.7 (8) 134.4 (7) 134.3 (7) 154.5 (8) 131.8 (8) 134.1 (7) 132.5 (7)
F(5') - C(5') - F(4') = 105.8(5) $F(5') - C(5') - C(5') = 111.F(5') - C(5') - F(5') = 105.8(5)$ $F(5') - C(5') - F(5') = 106.$	C(6) - N(1) - C(2) $C(3) - C(2) - N(1)$ $C(1) - N(2) - C(2)$ $C(1') - N(2) - C(1)$ $N(4) - C(3) - C(2)$ $C(4') - N(3) - C(3)$ $C(4') - N(3) - C(4)$ $C(7') - C(5) - N(4)$ $C(7') - C(5) - C(7)$ $F(1) - C(7) - C(5)$ $F(2) - C(7) - F(1)$ $F(3) - C(7') - F(1)$ $F(3') - C(7') - F(1')$ $F(3') - C(7') - F(1')$ $C(5) - C(6) - N(1)$ $C(8) - C(6) - C(5)$ $F(4) - C(6) - C(5)$ $F(4) - C(6) - F(4)$ $F(4') - C(6') - C(6)$ $F(5') - C(6') - F(4')$ $F(6') - C(8') - F(4')$	118.2(5) $120.4(5)$ $120.4(5)$ $113.6(5)$ $119.5(5)$ $116.7(5)$ $115.4(5)$ $107.4(5)$ $107.4(5)$ $116.1(5)$ $112.3(5)$ $107.0(6)$ $106.6(6)$ $110.6(5)$ $106.8(6)$ $106.4(4)$ $116.6(5)$ $113.8(5)$ $111.3(6)$ $106.2(6)$ $106.2(6)$ $106.2(6)$ $106.2(5)$ $106.2(5)$ $105.8(5)$	$\begin{array}{c} N(2) - C(2) - N(1) \\ C(3) - C(2) - N(2) \\ C(1') - N(2) - C(2) \\ N(3) - C(3) - C(2) \\ N(4) - C(3) - N(3) \\ C(4') - N(3) - C(3) \\ C(5) - N(4) - C(3) \\ C(5) - N(4) - C(3) \\ C(6) - C(5) - N(4) \\ C(6) - C(5) - N(4) \\ C(6) - C(5) - N(4) \\ C(6) - C(5) - C(7') \\ F(2) - C(7) - C(5) \\ F(3) - C(7) - C(5) \\ F(3) - C(7) - C(5) \\ F(3) - C(7) - F(2) \\ F(2') - C(7') - C(5) \\ F(3') - C(7') - F(2') \\ C(8) - C(6) - N(1) \\ C(8') - C(6) - N(1) \\ C(8') - C(6) - N(1) \\ C(8') - C(6) - C(8) \\ F(5) - C(8) - C(6) \\ F(6) - C(8) - F(5) \\ F(5') - C(8') - C(6) \\ F(6') - C(8') - F(5') \\ \end{array}$	119.9(6) $119.6(5)$ $123.7(6)$ $121.8(6)$ $118.6(5)$ $122.9(5)$ $117.3(5)$ $106.4(5)$ $110.4(4)$ $113.8(5)$ $112.1(6)$ $112.7(6)$ $105.7(6)$ $103.4(5)$ $104.1(6)$ $101.7(5)$ $106.7(5)$ $112.4(5)$ $113.3(5)$ $106.3(6)$ $113.5(5)$ $111.8(6)$ $106.1(5)$

Atomkoordinaten (x10⁴) und äquivalente isotrope Thermalparameter (pm^2x10^{-1}) für 5

	x	У	z	U(eq)
Sb	2415(1)	6206(1)	7320(1)	41(1)
Cl(1)	3432(2)	6346(2)	6391(2)	94(1)
C1(2)	1332(2)	6046(1)	8211(2)	81(1)
C1(3)	2929(2)	7785(1)	8003(2)	75(1)
C1(4)	1891(1)	4624(1)	6634(1)	65(1)-
Cl(5)	960(1)	6880(2)	5984(1)	77(1)
C1(6)	3845(2)	5549(2)	8669(2)	110(1)
C(1)	2212(4)	3946(4)	1554(4)	35(2)
C(11)	1139(4)	3508(4)	851(4)	43(2)
C(12)	2567(5)	4788(5)	1058(5)	52(3)
F(1)	346(3)	4127(3)	650(3)	70(2)
F(2)	916(3)	2749(3)	1255(3)	77(2)
F(3)	1149(3)	3256(4)	-14(3)	91(2)
F(4)	1650(3)	5492(3)	692(3)	74(2)
F(5)	3409(3)	5213(3)	1724(3)	81(2)
F(6)	2794(4)	4469(3)	322(3)	86(2)
C(2)	2692(4)	3638(4)	3332(4)	37(2)
C(21)	2265(5)	2959(5)	3764(4)	49(3)
F(7)	2323(3)	2047(3)	3549(3)	79(2)
F(8)	1249(3)	3176(3)	3372(3)	69(2)
F(9)	2592(3)	3039(3)	4736(3)	83(2)
F(10)	3377(3)	5150(3)	4226(3)	76(2)
F(11)	4267(4)	3931(3)	4958(3)	119(3)
C(22)	3759(4)	4317(4)	4091(4)	44(2)
F(12)	4450(3)	4525(3)	3736(3)	96(2)
C(3)	3378(4)	3016(3)	2734(4)	35(2)
N(3)	4136(4)	2355(3)	3139(4)	50(2)
C(31)	4507(5)	1648(5)	2446(6)	67(3)
0(32)	4652(6)	2053(5)	4183(5)	72(3)
N(1)	2171(3)	4254(3)	2522(3)	31(2)
U(4)	1512(4)	500014)	2493(4)	31(2)
N(4)	1147(3)	5376(3)	3086(3)	42(2)
C(41)	309(0)	0210(4) 510/(6)	2001(0)	66(4)
	1332(0)	0124(0) 2001(3)	412010)	69(3)
10 (2)	2511(3)	3201(3)	1151(3)	41(2)

* äquivalente isotrope U berechnet als ein Drittel der Spur des orthogonalen U_{ij} Tensors

366

Tab. 3

Bindungsabstände (pm) und ~winkel (°) für 5

$ \frac{Sb-Cl(1)}{Sb-Cl(3)} \\ Sb-Cl(5) \\ C(1)-C(11) \\ C(1)-N(1) \\ C(11)-F(1) \\ C(11)-F(3) \\ C(2)-F(5) \\ C(2)-C(21) \\ C(2)-C(3) \\ C(21)-F(7) \\ C(21)-F(7) \\ C(21)-F(9) \\ F(11)-C(22) \\ C(3)-N(3) \\ N(3)-C(31) \\ N(1)-C(4) \\ N(4)-C(41) $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{c} Sb-C1(2)\\ Sb-C1(4)\\ Sb-C1(6)\\ C(1)-C(12)\\ C(1)-N(2)\\ C(12)-F(4)\\ C(12)-F(4)\\ C(12)-F(6)\\ C(2)-C(22)\\ C(2)-N(1)\\ C(21)-F(3)\\ F(10)-C(22)\\ C(22)-F(12)\\ C(3)-N(2)\\ N(3)-C(32)\\ C(4)-N(4)\\ N(4)-C(42)\\ \end{array}$	236.9 237.0 233.5 154.5 140.3 129.2 133.1 131.5 156.6 146.6 132.1 130.5 129.5 129.5 128.6 145.9 127.9 147.6	<pre>(2) (2) (2) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7</pre>
Cl(2) - Sb - Cl(1) $Cl(3) - Sb - Cl(2)$ $Cl(4) - Sb - Cl(2)$ $Cl(5) - Sb - Cl(3)$ $Cl(5) - Sb - Cl(3)$ $Cl(6) - C(1) - C(11)$ $F(2) - C(1) - C(11)$ $F(3) - C(11) - C(2)$ $F(5) - C(12) - C(2)$ $F(5) - C(21) - C(2)$ $F(6) - C(21) - C(2)$ $F(6) - C(21) - C(2)$ $F(6) - C(21) - C(2)$ $F(3) - C(2) - C(3)$ $F(3) - C(3) - C(3)$ $C(32) - N(3) - C(3)$ $C(4) - N(1) - C(1)$ $N(4) - C(4) - X(1)$ $C(42) - N(4) - C(4)$	17 9 8 9 9 17 10 10 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 10	6.0(1) 0.1(1) 9.8(1) 0.0(1) 0.2(1) 1.0(1) 9.3(1) 6.9(1) 9.9(4) 7.9(4) 6.5(4) 0.6(4) 0.8(5) 9.2(5) 9.2(5) 9.2(5) 9.3(5) 1.6(5) 8.5(5) 0.0(4) 1.0(4) 9.7(4) 1.1(5) 2.6(5) 6.8(5) 4.3(5) 9.1(5) 6.7(6) 3.3(4) 6.4(5) 5.2(5) 7.7(4) 6.8(5) 1.0(5) 1.4(4)	Cl(3)-Sb-Cl(Cl(4)-Sb-Cl(Cl(4)-Sb-Cl(Cl(5)-Sb-Cl(Cl(5)-Sb-Cl(Cl(5)-Sb-Cl(Cl(6)-Sb-Cl(Cl(6)-Sb-Cl(Cl(6)-Sb-Cl(Cl(1)-C(1)-C(N(1)-C(1)-C(F(1)-C(1)-C(F(2)-C(1))-FF(3)-C(1)-FF(3)-C(1)-FF(3)-C(1)-FF(4)-C(12)-FF(5)-C(12)-FF(5)-C(12)-FC(22)-C(2)-C(N(1)-C(2)-C(N(1)-C(2)-C(F(7)-C(21)-FF(8)-C(21)-FF(9)-C(22)-FF(9)-C(22)-FF(10)-C(22)-FF(10)-C(22)-FF(11)-C(22)-FF(12)-C(22)-TN(3)-C(3)-C(N(2)-C(3)-N(1)-C(C(4)-N(1)-C(C(42)-N(4)-C	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 3 \\ 2 \\ 2 \\ 4 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1$	91.2(1) 88.9(1) 179.7(1) 83.4(1) 90.6(1) 90.6(1) 90.5(4) 112.1(4) 107.7(4) 112.9(5) 106.4(5) 106.4(5) 105.8(5) 105.8(5) 107.4(5) 117.1(4) 107.9(4) 111.7(5) 105.7(5) 105.4(5) 122.5(5) 106.4(5) 122.5(5) 126.4(5) 122.3(5) 126.4(5) 122.3(5) 126.4(5) 122.2(5) 122.2(5)

EXPERIMENTELLES

¹⁹F-NMR-Spektren: Bruker WP 80 SY (75.39 MHz), CFCl₃ als interner Standard. - ¹³C-NMR-Spektren: Bruker AM 250 (62.896 MHz), TMS als interner Standard. - Massenspektren: Finnigan MAT 8230. Allgemeine Arbeitsbedingungen: Alle Operationen wurden unter sorgfältigem Feuchtigkeitsausschluß durchgeführt. Geräte und Lösungsmittel waren dementsprechend vorbereitet.

2,3-Bis(dimethylamino)-5,6-dihydro-5,5,6,6-tetrakis(trifluormethyl)-

pyrazin (3): 2.5 g (10 mmol) 1 werden in 5 ml Acetonitril mit 1.2 g (12 mmol) NEt, versetzt. Nach 3 d Rühren bei Raumtemp. wird das Reaktionsgemisch bis zur Trockene eingeengt und mit ca. 20 ml Et₂O aufgenommen. Vom Hydrochlorid wird filtriert, das Lösungsmittel verdampft und der ölige Rückstand bei 0°C belassen. Nach mehreren Tagen kristallisiert 3 in Form großer, farbloser Platten aus, die aus n-Pentan umkristallisiert werden. Schmp. 107° C, Ausb. 1.1 g (50 %). - MS (70 eV): m/z (%) 446 (M,30), 421 (M-F,10), 371 (M-CF₃, 15), 289((CF₃)₃CNCNMe₂, 56), 220 ((CF₃)₂CNCNMe₂, 80), 205 ((CF₃)₂CNCNMe, 100) 69 (CF₃, 60) und weitere Fragmente. - 19F-NMR (CDCl₃): δ -66.5 (sept., 6F, CF₃, J_{Raum} = 13.3 Hz); -69.2 (sept., 6F, CF₃, J_{Raum} = 13.3 Hz). -¹³C-NMR(CDCl₃): \$ 38.4 (s, NCH₃); 70 (m, C(CF₃)₂); 122.2 (q, ¹J_{CF}= 289 Hz, CF_3 ; 122.5 (q, ${}^{1}J_{CF}$ =291 Hz, CF_3); 153 ppm (s, C=N). [4-Dimethylamino-1-dimethylaminomethenium-1,2-dihydro-2,2, 5,5-tetrakis(trifluormethyl)-5H-imidazol]hexachloroantimonat (5): 2 g (7.8 mmol) 1 werden in 50 ml Acetonitril gelöst und 2.3 g (7.8 mmol) ${\rm SbCl}_{\varsigma}$ bei 0° C zugetropft. Anschließend wird das Lösungsmittel abgezogen und der Rückstand mit 20 ml Et₂O gewaschen. Das zurückbleibende hochviskose Öl wird in Et₂O/CH₃CN (10:1) gelöst. Bei -30^oC

368

kristallisiert 5 in farblosen Kristallen. Schmp. (Zers.) 198° C, Ausb. 1.36 g (45 %). - MS: FD (pos.): m/z (%) 441 (M-SbCl₆, 100); FD (neg.): m/z (%) 335 (SbCl₆, 100). - ¹⁹F-NMR (CDCl₃/CD₃CN): S -63.7 (m, 6F, CF₃); -73.3 (m, 6F, CF₃). - ¹³C-NMR (CDCl₃/CD₃CN): S 42.0 (s, NCH₃); 44.8 (s, NCH₃);49.6 (s, NCH₃); 80.5 (sept., ²J_{CF}=32.2 Hz, C(CF₃)₂); 93.0 (sept., ²J_{CF}=30.4 Hz, C(CF₃)₂); 120.0 (q, ¹J_{CF}=290.3 Hz, CF₃); 120.9 (q, ¹J_{CF}=288.8 Hz, CF₃); 157.0 (s, C=N); 161.4 (s, C=N).

N-[2,2,2-Trifluor-1-(trifluormethyl)-1-(methoxy)ethyl]-dimethyl-

form-amidin ($\underline{6}$): 0.3 g (1,2 mmol) $\underline{1}$ werden in 1 ml Acetonitril gelöst, mit 0.13 g (1.3 mmol) NEt, und anschließend mit ca. 0.5 ml MeOH versetzt. Die Reaktion ist stark exotherm. Nach Entfernen aller flüchtigen Bestandteile bei 30 Torr wird der weiße Rückstand in Et₂O aufgenommen, vom Hydrochlorid filtriert und das Filtrat erneut bei 30 Torr eingedampft. 6 fällt als farbloses öl an. Ausb. 0.28 g (93 %). MS (70 eV): m/z (%) 252 (M, 20), 233 (M-F, 15), 221 (M-OMe, 30), 183 (M-CF₂, 85), 69 (CF₂, 20), 44 (NMe₂, 100) und weitere Fragmente. -FI (10 kV): m/z (%) 252 (M, 100) - ¹⁹F-NMR (CDCl₃, Gaußmultiplikation): 5 - 74.8 (qd, 6F, CF₃, ${}^{5}J_{(OCH)F} = 1 \text{ Hz}$, ${}^{5}J_{(CH)F} = 0.6 \text{ Hz}$). N-[2,2-Difluor-1-(trifluormethyl)ethylenyl]-dimethylformamidin (9): 2 g (7.8 mmol) 1 werden in 10 ml Acetonitril gelöst und bei -78° C 1.28 g (7.8 mmol) (Me₂N)₃P zugegeben. Man läßt langsam auf Raumtemp. erwärmen (ca. 3h), entfernt bei 30 Torr das Lösungsmittel und nimmt den Rückstand in n-Pentan auf. Nach Filtration vom Unlöslichen wird bei 10 Torr fraktioniert. 9 wird als farbloses öl, Sdp. 56° C; erhalten. Ausb. 1.3 g (82 %). - MS-FI (10 kV): m/z (%) 202 (M, 100). -¹⁹F-NMR (CD₃CN): δ -64.5 (dd, 3F, CF₃, ⁴J_{AX}=25 Hz, ⁴J_{MX}=11 Hz); -96.4 (dq, 1F, CF, ${}^{4}J_{{}_{\bf AM}}=54$ Hz, ${}^{4}J_{{}_{\bf AX}}=25$ Hz); -97.9 (dq, 1F, CF, ${}^{4}J_{AM} = 54 \text{ Hz}, {}^{4}J_{MX} = 11 \text{ Hz}). F^{A}F^{M}C = C(CF_{3}^{X}) - N = CHNMe_{2}.$

Für die Förderung dieser Arbeit danken wir der <u>Deutschen</u> Forschungsgemeinschaft und dem Fonds der Chemischen Industrie

LITERATUR

- 1 H. Grützmacher, H.W. Roesky, Chem. Ber. 120 (1987) 995.
- 2 Trifluormethylierte Nitrilylide siehe: K. Burger, J. Albanbauer, F. Manz, <u>Chem. Ber</u>. <u>107</u> (1974) 1823; eine vergleichende Übersicht in: H.-J. Hansen, H. Heimgartner in Padwa (eds.), <u>1-3-</u> <u>Dipolar Cycloaddition Chemistry</u>, Vol. I, Wiley and Sons, New York 1984.
- 3 H. Grützmacher, H.W. Roesky, J. Fluorine Chem. 35 (1987) 295.
- 4 K. Burger, P. Hübl, <u>Chem. 2tg</u>. <u>110</u> (1986) 89 und dort zittierte Literatur.
- 5 Zur Synthese von Perfluorpinakolat vergleiche: A.F. Janzen, P.F. Rodesiler, C.J. Willis, <u>J. Chem. Soc. Chem. Commun</u>.1966, 672 und D. Hellwinkel in G.M. Kosolapoff (Ed): <u>Organophosphorus Compounds</u>, 2.Aufl.,3,Wiley Interscience, New York, 1972, 185.
- H.G. Viehe, R. Merenyi, L. Stella, Z. Janousek, <u>Angew. Chem. 91</u>
 (1979) 982; <u>Angew. Chem. Int. Ed. Engl. 18</u> (1979) 917; H.G. Viehe
 Z. Janousek, R. Merenyi, <u>Acc. Chem. Res. 18</u> (1985) 148.
- 7 D. Seebach, A.K. Beck, P. Renaud, <u>Angew. Chem. 98</u> (1986) 96; <u>Angew. Chem. Int. Ed. Engl. 25</u> (1986) 98:
- 8 I. Ruppert, K. Schlich, W. Volbach, <u>Tetrahedron Lett</u>. <u>25</u> (1984) 2195.
- 9 H. Mack, M. Hanak, <u>Angew. Chem.</u> <u>98</u> (1986) 181; <u>Angew. Chem.</u> <u>Int. Ed. Engl.</u> <u>25</u> (1986) 184.

- 10 Weitere Einzelheiten zur Kristalluntersuchung können Beim Fachinformationszentrum Energie, Physik, Mathematik GmbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-52399, der Autoren und des Zeitschriftenzitates angefordert werden.
- 11 K. Keller, A. Thiel, H.W. Roesky, <u>J. Fluorine Chem</u>. <u>26</u> (1984) 313; H. Grützmacher, H.W. Roesky, <u>J. Fluorine</u> <u>Chem.</u> <u>37</u> (1987) 279.